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ABSTRACT

An Exploration of Neural Networks in Enhanced
Resolution Remote Sensing Products

Jordan Paul Brown
Department of Electrical and Computer Engineering, BYU

Master of Science

Scatterometry and radiometry are used to obtain measurements of Earth properties with
extensive spatial coverage at daily or near-daily temporal resolution. Their measurements are used
in many climate studies and weather applications, such as iceberg tracking, ocean wind estimation,
and volumetric soil moisture measurements. The spatial resolution of these data products ranges
from a few kilometers to tens of kilometers. Techniques to enhance the spatial resolution of these
products help reveal finer scale features, but come at the cost of increased noise.

This thesis explores the application of neural networks as a possible method to handle the
noise and uncertainty in enhanced resolution scatterometer and radiometer data products. The
specific sensors discussed are the Advanced Scatterometer (ASCAT) and its Ultrahigh Resolution
(UHR) winds, and the Soil Moisture Active Passive (SMAP) radiometer and its soil moisture mea-
surements. ASCAT UHR winds have already been validated in previous studies [1], but inherent
ambiguity in the wind retrieval model couples with higher noise levels to decrease overall accu-
racy. Neural networks are tested as an alternate modeling method to possibly improve the accuracy
compared with the current method. It is found that the feed forward neural networks tested are able
to accurately estimate winds in most calculations, but struggle with the same ambiguity that occurs
in the current model. The neural networks handle this ambiguity inconsistently, which results in
worse overall network performance compared to the current wind retrieval method.

For the SMAP soil moisture measurements, the radiometer form of the Scatterometer Image
Reconstruction algorithm is validated as a method to enhance resolution. While the increased noise
at higher resolution does worsen overall accuracy, the performance remains within about 0.04 cm3

cm�3 RMSE of a validated soil moisture product, suggesting that fine scale features revealed as
resolution is enhanced are accurate. Corrections to the soil moisture extraction model used in these
tests could further improve these results. Neural networks are then applied and compared with the
theory-based approach to extract soil moisture from the brightness temperature measurements, and
are found to give slightly more accurate results than the theoretical model, though with somewhat
higher error variance.

Keywords: scatterometer, radiometer, neural network, backscatter, radar cross section, brightness
temperature
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CHAPTER 1. INTRODUCTION

Over recent decades, remote sensing has become increasingly popular in weather predic-

tion and the study of natural hazards and climate features [2]. Scatterometry contributes through

the use of active satellite-based sensors which measure microwave radar scattering off the earth's

surface, and radiometry uses passive satellite-based sensors which measure the microwave thermal

emission from the earth. Scatterometers and radiometers enable global weather and climate mea-

surements with daily or near-daily temporal coverage, at spatial resolutions from a few kilometers

to a few tens of kilometers. Improved signal processing algorithms in recent years have enabled

more accurate, higher resolution measurements than previously possible. In both scatterometry and

radiometry, however, the enhanced resolution comes at the cost of increased noise, which leads to

increased uncertainty and more inaccuracies in the derived data products. This thesis explores the

application of neural networks to the derived enhanced resolution data products, speci�cally wind

and soil moisture, and their potential to improve product accuracy.

1.1 Introduction to Neural Networks

Arti�cial neural networks, often simply referred to as neural networks, are biologically-

inspired computing systems designed be a �exible, automated means to model a relationship be-

tween input data and target outputs. Some common applications include image feature or pattern

recognition, data classi�cation, and mathematical model approximation. There are different types

of neural networks, but all consist of nodes which represent the input, intermediate, and output val-

ues throughout the network; weighted paths connecting the nodes; and functions which are applied

to the values at each node, modifying the value in some desired way. The nodes are organized

into layers, the �rst of which is known as the input layer, the last is known as the output layer, and

all layers in between are called hidden layers. The networks are adjusted for better performance

in each application by varying the number of nodes and layers, tuning the weights and bias terms
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associated with each connection between nodes, modifying the pattern of connections between

nodes, and changing the type of activation function being applied.

A few common forms of neural networks can be seen in Figure 1.1. These example network

frameworks each have uses in different modeling applications and are described, along with several

others not shown, in [3]. The networks in this thesis are all based on the feed-forward framework,

which is commonly used in modelling numerical functions. Feed forward neural networks are

explained in greater detail in Chapter 2, further motivating their use in this application.

Figure 1.1: A chart of a few of the different neural network frameworks available. Beyond the
different frameworks, the numbers of nodes, layers, etc. can be varied in order to �nd a network
which �ts the relevant application. This chart was taken from [4].

Once the speci�c architecture of the network is selected, the weights and biases are ini-

tialized, and a set of training data (example inputs and corresponding target outputs) is introduced

to the network. The network then iterates through the training set, adjusting its model weights

and biases after each iteration to more closely estimate the target outputs. This is continued for a

desired amount of time, or until a desired model accuracy is reached.

Theoretically, neural networks have the potential to model any calculable relationship to

any desired degree of accuracy, given enough nodes and layers. This is an idea developed further

in Chapter 2. However, despite their impressive modelling power, neural networks are somewhat

2



of a black-box approach, meaning that the actual information learned by the network is dif�cult

to understand or represent in a more transparent way, especially as we add nodes and layers to

the architecture. They also can vary signi�cantly given different initializations, training data, and

other training parameters. For many applications, these facts do not pose a problem as long as the

network output performance is accurate; for others, this discourages the use of neural networks, as

the dif�culty to replicate their models or predict their behavior in interpolation and extrapolation

leaves too much uncertainty.

This thesis explores different aspects of applying feed forward neural networks to the wind

and soil moisture retrieval problems. I examine the potential accuracy of neural network derived

models in these areas, as well as the possibility of extracting information from neural networks to

inform future modeling improvements.

1.2 Scatterometry and Wind Retrieval

Wind near the sea surface plays a large role in weather and wave prediction, but obtaining

suf�cient in situ measurements for these applications at decent temporal and spatial resolutions

is impractical, if not impossible. In 1974, this problem was addressed through the use of remote

sensing, when the S-193 scatterometer on Skylab successfully demonstrated the potential of radar

in retrieving near-surface wind speed from space. This led to the use of the �rst satellite-based

scatterometer intended for wind retrieval, carried on the Seasat satellite launched in 1978 [2]. Since

then, wind retrieval scatterometer systems and algorithms have continued to improve, resulting in

wind products with increased resolution and accuracy.

One such instrument currently used in scatterometer wind retrieval is known as the Ad-

vanced Scatterometer (ASCAT), which was included aboard three separate systems (Metop-A

launched in 2006, Metop-B launched in 2012, and Metop-C launched in 2018) from the European

Space Agency (ESA) and European Organization for the Exploitation of Meteorological Satellites

(EUMETSAT). The Metop satellite design is visualized in Figure 1.2. Together, the instruments

have provided nearly continuous radar data contributing to studies of ice, soil moisture, and wind

since 2007. Recent resolution enhancement advancements in wind data speci�cally have lead to

new products like the Ultra High Resolution (UHR) ASCAT wind product [1]. The ASCAT UHR

winds give us a better look at small scale wind patterns, but also introduce increased noise. This

3



extra noise and uncertainty introduced in enhanced resolution wind products, together with some

inherent ambiguity in the wind retrieval model, can lead to increased noise relative to the lower-

resolution counterparts.

Figure 1.2: A visualization of the Metop-A satellite, with the �rst ASCAT on board. ASCAT
consists of the three beam-like antennas in a fan-beam shape on the bottom of the system, with
processing components inside the main body of the satellite. This �gure was taken from [5].

This thesis explores the application of neural networks in an attempt to improve scatterom-

eter wind retrieval with two different methods. The �rst is to use the networks in a traditional

way to see if we can train a network to perform more accurately than the current ASCAT wind

retrieval model. The second is to train a simple neural network to recreate the wind retrieval model

with suf�cient accuracy, then attempt to extract information from the network to inform model

improvements.

1.3 Radiometry and Soil Moisture

Spaceborne radiometers have been used slightly longer than scatterometers, with the �rst

earth-observing spaceborne sensor on board the Russian satellite Cosmos 243 in 1968 [2]. Ra-

diometer data has been used in a wide variety of weather and climate studies, as well as military
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applications. The introduction of synthetic-aperture radiometers, or interferometers, in the 1990s

provided the possibility for much higher resolutions in radiometry than previously provided, which

improved the usefulness of derived data products like sea surface salinity and soil moisture [2].

Figure 1.3: An example map of droughts in the United States. Soil moisture data from SMAP can
be used to improve the resolution and accuracy of maps like this. This �gure was taken from [6].

Later in 2007, an increased interest in soil moisture retrieved through remote sensing was

evident in an Earth Science Decadal Survey performed by the National Research Council. The

council described among its research priorities for the next decade a need for improved �ood

prediction and drought monitoring (example in Figure 1.3), improved weather forecasting, and

enhanced understanding of the role of surface water in the energy and carbon cycles [7]. This led to

the creation of the Soil Moisture Active Passive (SMAP) mission in 2008, with the SMAP satellite
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�nished and launched in 2015. The SMAP team addresses the priorities mentioned previously by

tracking global soil moisture levels daily through scatterometry and radiometry.

Figure 1.4: An illustration of the SMAP system from [8].

The SMAP instrument, visually represented in Figure 1.4, is unique in that it was designed

to use both a radar (active) and radiometer (passive) speci�cally for soil moisture retireval. This

design allows SMAP to exploit the bene�ts of both methods of soil moisture retrieval. Gener-

ally, radar-based soil moisture retrieval offers higher resolution images, while radiometer-based

retrieval offers higher accuracy and sensitivity. Unfortunately, the radar on the SMAP system

failed on July 7, 2015, shortly after the instrument started returning data, and is no longer in use.

Thus current SMAP data processing methods use only passive data. The baseline resolution of

the resulting data products is that of the passive data, much greater than the mission goals with

the active contribution [7]. This failure motivated an interest in image resolution enhancement

techniques in order to continue the data products at the original desired resolutions.
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One resolution enhancement method is known as the radiometer form of the Scatterometer

Image Reconstruction algorithm (rSIR), developed at Brigham Young University, and described

in detail in [9]–[11]. While the technique offers promise in achieving or surpassing the resolution

goals of the SMAP mission, it also increases noise and uncertainty which carries over into the

derived soil moisture product. The uncertainty in the higher resolution soil moisture products

motivates this exploration of the application of neural networks to the problem. In this thesis, I

show the application of the rSIR algorithm to the original brightness temperature data, and the

resultant enhanced resolution data. I then compare two methods of extracting soil-moisture from

the enhanced resolution data: one is a theory-based approach, and the other is a neural network

modelling approach.

1.4 Summary of Results

In the case of wind retrieval, it is found that feed forward neural networks struggle with

consistently resolving ambiguity. They were able to accurately model the training data as well

as certain test regions, but had occasional high error in areas of new wind patterns or high noise.

It is also found that, for both wind speed and wind direction, the information extracted from an

accurately trained neural network using the method in [12] is too convoluted to provide any extra

clarity to the underlying model.

For soil moisture extraction, neural networks were found to have slightly better overall

accuracy than a theory-based method at both 36 km and 3 km resolution. However, there was more

variation in the error, which increased at the higher resolution.

1.5 Thesis Organization

This chapter has given a brief introduction to the topics discussed in this thesis, which are

described in more detail through the remaining chapters. Chapter 2 is a background chapter sep-

arated into three sections: one discusses the theory behind neural networks and the information

extraction algorithm I use, the second describes instrument and algorithm information for the scat-

terometry wind retrieval problem, and the third describes instrument and algorithm information for

the radiometry soil moisture retrieval and resolution enhancement problems. Chapter 3 shows my
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application of neural networks to ASCAT UHR winds, and discusses the potential of extracting

information from those networks to improve current models. Chapter 4 describes the enhanced

resolution soil moisture product resulting from the rSIR algorithm, and compares the extraction of

soil moisture using traditional methods versus neural networks. Chapter 5 describes conclusions

drawn and the contributions of this thesis to the remote sensing �eld, then discusses possible future

work on these topics.
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CHAPTER 2. BACKGROUND

This chapter presents background information and theory on the instruments and algo-

rithms used throughout this thesis. The chapter is separated into three sections: �rst I describe the

ASCAT wind retrieval algorithm, second I describe the SMAP passive soil moisture retrieval algo-

rithm and method to enhance resolution, and �nally I present some background on neural networks

along with a description of the neural network information extraction algorithm.

2.1 ASCAT UHR Wind Retrieval

The Advanced Scatterometer was developed by ESA and EUMETSAT, and was designed

speci�cally to measure ocean winds [13], though its uses have been expanded to things like storm,

sea ice, and iceberg tracking, and soil moisture estimation [1], [2], [13]–[18]. It is a fan-beam

scatterometer, with six vertically-polarized antennas that produce elongated coverage patterns on

the earth with fore, mid, and aft azimuth angles for each of the two swaths (see Figure 2.1). The

fore pattern is at 45° of the along-track direction, the mid pattern is at 90°, and the aft pattern is at

135°. These multiple azimuth looks allow for multiple backscatter measurements at a single point,

which is required for accurate wind retrieval results [19]. ASCAT also operates in C-band at a

frequency of 5.255 GHz, which enables all-weather, day-and-night measurements.

To retrieve the wind direction and speed from the backscatter measurement at a given lo-

cation in the swath, a model is applied which is known as a geophysical model function (GMF).

The overall idea of a GMF is to take advantage of wind interactions with the ocean waves, and

in turn the signal's interactions with those waves. Generally, more wind leads to a rougher ocean

surface, which increases the backscatter received by the antenna. Wind direction also changes the

direction of waves on the ocean surface, which align differently with the incoming signal and vary

the amount of backscatter. These ideas are illustrated in Figure 2.2.

9




	Title Page
	Abstract
	Table of Contents
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1   Introduction
	1.1 Introduction to Neural Networks
	1.2 Scatterometry and Wind Retrieval
	1.3 Radiometry and Soil Moisture
	1.4 Summary of Results
	1.5 Thesis Organization

	Chapter 2   Background
	2.1 ASCAT UHR Wind Retrieval
	2.2 SMAP Soil Moisture Retrieval
	2.2.1 rSIR Algorithm
	2.2.2 Soil Moisture Extraction
	2.2.3 Soil Moisture Algorithm Limitations

	2.3 Neural Networks
	2.3.1 Information Extraction


	Chapter 3   Neural Networks Applied to ASCAT UHR Wind Retrieval
	3.1 Network Selection and Validation
	3.1.1 Theory
	3.1.2 Training
	3.1.3 Network Testing
	3.1.4 Analysis

	3.2 Extraction of the Neural Network Transfer Function

	Chapter 4   Neural Networks in SMAP Soil Moisture Retrieval
	4.1 rSIR Enhanced Resolution Soil Moisture
	4.1.1 Validation Method
	4.1.2 Validation Results and Analysis

	4.2 Network Selection and Validation
	4.2.1 Training
	4.2.2 Network Testing
	4.2.3 Analysis


	Chapter 5   Conclusion
	5.1 Conclusion
	5.2 Contributions
	5.3 Future Work

	References

