Sea Ice Observed at Enhanced Resolution by Spaceborne Scatterometers

D. G. Long D. Early

Electrical and Computer Engineering Dept., 459 Clyde Build., Brigham Young University, Provo, UT 84602

Abstract - Spaceborne scatterometers such as the Seasat-A (SASS) and the ERS-1 Active Microwave Instrument (AMI) scatterometers measure the radar backscatter of the earth's surface at a resolution of approximately 50 km. While adequate for studying winds over the ocean, the low resolution limits the utility of the scatterometer data for land and ice studies. However, by using a recently developed resolution enhancement algorithm we have been able to produce a time series of enhanced resolution radar backscatter of sea ice in the southern polar region. The images dramatically reveal seasonal change in the sea ice. Large-scale circulation and mixing patterns are evident and the ice edge is readily discernible. Comparisons between Ku-band (SASS) images and C-band (ERS-1) images are made. Our results suggest that scatterometer data coupled with the resolution enhancement technique is useful in sea ice studies. The frequent, multiple-incidence angle revisit may provide the capability to map ice age and snow cover.

I. INTRODUCTION

Radar remote sensing is a proven technique for the study of polar ice from space. Traditionally, synthetic aperture radars (SARs) have been a primary tool for radar studies of the polar regions. However, while the high resolution of SARs is well suited for focused-area studies, their narrow swath and limited temporal coverage have precluded their use in frequent, large-scale monitoring. Wider, more frequent coverage is required to achieve the desired goals in monitoring polar ice. Such comprehensive coverage can be obtained by using wind scatterometers. Scatterometers are low resolution (~50 km) real aperture radars originally designed to measure the backscatter of the ocean's surface in order to calculate the near-surface wind. They have very wide swaths (500-1000 km) and make measurements of the backscatter at a diversity of azimuth and incidence angles. While the low resolution of the scatterometer data has limited the application of the data, a recently developed resolution enhancement algorithm can be applied to produce images of the surface backscatter at resolutions as fine as 4 km [4]. This algorithm has been used successfully with SASS data to study the Greenland ice sheet by Long and Drinkwater [1993]. Using simple scattering models, they were able to identify and map key ice facies over virtually all of Greenland over the summer through fall seasons in 1978.

In this paper we apply the resolution enhancement algorithm to both SASS and ERS-1 scatterometer data to create enhanced resolution (3-5 km) backscatter images of Antarctic sea ice. This paper is organized as follows: first, we briefly consider backscattering from sea ice and discuss the resolution enhancement technique. We then present sample images from an image time series covering July through early October 1978 for SASS data and July through October 1992 for ERS-1 data. We conclude with some observations and conclusions regarding the images and their utility.

II. RADAR BACKSCATTER FROM SEA ICE

SASS made 14.6 GHz measurements of hh- and vv-polarized σ₀ on ascending and descending orbits at various azimuth and incidence angles. The nominal resolution was approximately 50 km over an irregular grid with hexagonal resolution cells [4]. Measurements were made over two 500-700 km wide swaths. In the polar regions a given area was generally observed twice each day. SASS operated for 3 months in 1978. The ERS-scatterometer, which is currently operating, makes nominally 50-60 km resolution measurements of 5.6 GHz vv-polarized σ₀ on a regular 25 km grid at three azimuth angles over a 500 km wide swath. Because the scatterometer transmitter is shared with the AMI SAR, there are frequent scatterometer data outages in the polar regions.

Both the Seasat and ERS-1 scatterometers observe σ₀ over a wide range of incidence angles. σ₀ is, however, a function of the measurement incidence angle θ. In the range θ ∈ [20°, 55°], σ₀ (in dB) is approximately a linear function of θ, i.e.,

σ₀(θ) = A + B(θ - 40°) (1)

where the coefficients A and B depend on the ice scattering characteristics and polarization. A can be thought of as the 40° "incidence angle-normalized σ₀," while B describes the dependence of σ₀ on θ. Due to the wide range in θ, we will use A and B rather than σ₀ in our images. In Eq. (1), 40° represents the mean θ of the observations. σ₀ may also be a function of the azimuth angle of the observation; however, this is not considered in this paper.

The radar scattering in sea ice is highly dependent on the characteristics of the ice [1,2,5,6]. Some of the physical characteristics of the ice which affect the backscatter include: ice age, snow cover, air bubbles, brine inclusions, and the presence of liquid water. For example, in one study during winter conditions [5] at a limited number of sample sites, it was determined that the σ₀ at a 40° incidence angle (i.e., A) is highly dependent on the ice...
age. For multi-year sea ice it was determined that A is approximately -8 ± 2 dB at Ku-band and approximately -19 ± 3 dB at C-band. First-year ice was much "darker" with σ^0 approximately -24 ± 4 dB at Ku-band and approximately -27 ± 4 dB at C-band. While the responses of first-year and multi-year ice can appear quite different, these differences can be reduced in the presence of liquid water in a surface or subsurface snow layer. Liquid water changes the dielectric properties of snow and ice and regulates the reflection or transmission of the radar signal at the layer interfaces. This, in turn, may limit the contribution of scattering within lower layers. However, because the predominate scattering mechanisms are different for first-year and multi-year ice, it may be possible to distinguish the scattering mechanism by making multiple incidence angle measurements of the same region. Since the scatterometer makes σ^0 measurements over a wide range of incidence angles, the scatterometer data may enable determination of the primary scattering mechanism and, hence, enable mapping of ice age.

In examining the images presented below, note that because penetration into the ice is frequency dependent, with lower frequencies exhibiting higher penetration, C-band "sees" a slightly different portion of the ice than does Ku-band.

III. IMAGING TECHNIQUE

The imaging technique used in this paper is the scatterometer image reconstruction algorithm with filtering (SIRF) developed in [4]. A complete description of these algorithms may be found in this reference. The technique uses multiple, overlapping measurements of σ^0 and post-processing to improve the effective resolution. Images of A with resolution up to 3-5 km from nominally 50 km resolution SASS data and up to 5-8 km resolution from ERS-1 data were generated with the technique on a square grid of 14 pixels/deg latitude and longitude.

Resolution enhancement is not without cost; for instance, noise in the A images increases as resolution is increased. Hence, a tradeoff is made between the resolution and the noise level. Furthermore, multiple passes (which may take several days) over the target are required to obtain sufficient measurement overlap. The resolution enhancement is dependent upon the number of measurements with greater numbers contributing to a reduced estimate of noise and/or improved resolution. However, during the "imaging time interval" the target's radar characteristics must remain constant between passes. Some tradeoff must therefore be made between the imaging time interval and resolution when there is temporal change in the target, i.e., A and B should remain constant over the imaging time interval. For a sufficiently short interval this assumption is justified. However, ice motion and changing conditions limit the period for which it is true. For example, some diurnal variations in ice conditions can be expected. Unfortunately, because of the limited range of time-of-day observations in the scatterometer data, a full study of the diurnal variations of the backscatter is difficult and is not treated in this paper. Since this study was conducted during the winter period, any diurnal variations in the backscatter will be quite small. These and any other variations in σ^0 during the imaging time interval are treated as noise by the image reconstruction algorithm. In the image time series used in this paper, 6 days of data were used to construct each image. The resulting images reflect an average surface response during this time period. Ice motion during the imaging time interval results in some image smearing which is most noticeable along the ice edge.

In the general SIRF algorithm both A and B are estimated for each pixel. This requires σ^0 measurements spanning a sufficiently wide range of incidence angles for each pixel. However, with the short imaging time interval used in this paper some pixels had inadequate σ^0 incidence diversity to estimate A and B at the desired resolution. In applying the imaging technique, the resolution enhancement algorithm was modified to use a uniform B value for each pixel. Thus, only images of A were generated. The value of B used was determined by first collecting all the σ^0 measurements over a large test area. The area was selected to include samples of each of the responses observed. Linear regression of the σ^0 measurements versus incidence angle was then used to determine the nominal B value. While using a constant B in the imaging algorithm will introduce errors in the estimated A value, because of the small range (0.1 to 0.3 dB/$^\circ$) of B the maximum error in A is generally less than 1 dB. A later paper will present SIRF images of both A and B values.

IV. SASS IMAGE TIME SERIES

SASS σ^0 data span a range of $0^\circ < \theta < 70^\circ$; however, only measurements between 23$^\circ$ and 55$^\circ$ were used to create the images in this study. Measurements with excessive noise, (i.e., those with normalized standard deviations greater than 15%), were not used in the imaging process. Data from orbits with large spacecraft attitude errors were also rejected. The B value was assumed to be 0.2 dB/$^\circ$.

While SASS made both vertically (vv) and horizontally (hh) polarized Ku-band (14.6 GHz) measurements of σ^0, only vertically-polarized σ^0 measurements were used in this paper. Using the modified SIRF algorithm, a time series of A images of Antarctic sea ice was generated. The full 17 image time series covers JD 182 through JD 282 in 1978 (the time period of the Sealsat mission) with each image corresponding to a 6 day period. Three images selected from this time series over the Weddell Sea are shown in Fig. 1. (Note that the resolution of the original images was degraded to make these reproductions. The black spots are areas not covered by scatterometer measurements during the study. See imaging time interval.)

Examination of the images in Fig. 1 reveals significant spatial and temporal variation in A. The criss-cross pattern at the top of each image corresponds to the open ocean. The location of the ice edge is readily discernible in these images as the southern limit of the criss-cross pattern. The Antarctic peninsula is visible as the bright tongue (with a dark "backbone") just left of center. Note that at Ku-band glacial ice is generally brighter (i.e., has a higher A value) than sea ice. The actual brightness (in winter) of the glacial ice is dependent on the snow thickness and interannual layering (see [3]). The large bright spots in the Weddell Sea appear to be tabular icebergs within the ice pack. In the Weddell Sea area we note large spatial and temporal variations in A which appear to correspond to circulation patterns.

We note that the ranges of values of σ^0 over the ice
pack are less than the values observed by [5]. A casual
examination reveals that there are two extreme ranges of \(A \) values evident in the sea ice images: the brightest
areas have nominal \(A \) values of -14 to -10 dB while
the darkest regions are -20 to -18 dB. This range may
be compared with the \(-8 \pm 2 \) dB for multi-year ice and
\(-24 \pm 4 \) dB for first-year ice suggested by Onstott [1992].
We note that the image pixel values correspond to the
spatial (over the pixel area) and temporal (over a 6 day
period) average. Thus, given the relatively coarse resolu-
tion of the scatterometer pixels (3-5 km) it is likely that
the observed \(A \) values correspond to a mix of first-year
and multi-year ice as well as open water. In this case,
the observed value will tend to fall between the extremes
suggested for the first-year and multi-year ice. Further,
thermodynamic interactions of the ocean and ice will af-
flect the radar brightness. It is likely that this is one of
the primary mechanisms responsible for the observed
circulation patterns in the radar response.

In a simple experiment to study ice motion using the
SASS \(A \) images, each of several of these "tabular ice-
bergs" were manually located in each image of the SASS
time series. Two points on each target were located to en-
able study of their changing orientation. Several points
along the edges of the dark regions were also tracked.
A sample output is shown in Fig. 2. Target locations
for each image are shown as solid lines with dotted lines
interconnecting corresponding locations. The observed
clockwise rotation is consistent with the Weddell Sea
gyre. Further analysis of these images continues.

V. ERS-1 IMAGE TIME SERIES

The ERS-1 \(\sigma^0 \) data span a range of \(17^\circ \leq \theta \leq 65^\circ \).
All available ERS-1 scatterometer measurements which
did not have error flags were used to create images using
the AVE algorithm. The \(B \) value used was \(0.22 \pm 0.8 \). Un-
fortunately, because of spatial filtering applied in the
ground processing of the ERS-1 \(\sigma^0 \) measurements, the
possible resolution enhancement is significantly less than
that of SASS. The resolution is also reduced due to more
limited coverage resulting from ERS-1's single side op-
eration. Nevertheless, we have successfully created en-
hanced resolution imagery from the C-band (5.2 GHz)
ERS-1 data.

An image time series covering the same seasonal pe-
riod of the SASS data (but 14 years later) was generated.
Each image covers a 6 day period corresponding to the
SASS images. Three images selected from this time se-
ries (over the Weddell Sea) are shown in Fig. 3. As in
the SASS data, the images reveal significant spatial and
temporal variation in \(A \) though the apparent resolution
is significantly reduced. However, we note significant dif-
ferences in the pattern of \(A \) brightness in the Weddell
Sea from the SASS images. Most of these differences
are attributed to interannual variability. However, the
differing scattering characteristics between Ku-band and
C-band may also be a factor. For example, the reduced
resolution of the ERS-1 images may preclude location of
tabular icebergs. Further analysis of these images con-
tinues.

VI. DISCUSSIONS AND CONCLUSIONS

While SASS data is over a decade old, it provides a
unique historical data set to study climate change. By us-
ing the enhanced resolution scatterometer imaging tech-
nique [4], we have been able to generate Ku-band (and
C-band using ERS-1) images of \(A \) for Antarctic sea ice.
Although these images have only "medium-scale" resolu-
tion (4-8 km), they provide an ice sheet-wide view of
the changing radar backscatter of the ice during several
months of 1978 (SASS) and 1993 (ERS-1). Since the
radar backscatter can be related to ice conditions [6], the
scatterometer images enable wide-area studies of the ice
sheet. Thus, the scatterometer data, coupled with reso-
lution enhancement algorithms, can be an effectively tool
in studies of sea ice. We note that some of the limitations
of the imaging technique can be overcome by suitably
modifying future scatterometers (see [4]). For example,
with a modified scatterometer, multiple orbit passes are
not required and the resolution can be improved to as
low as 1-2 km. Coupled with very frequent revisits and
multiple-incidence angle observations, such scatterome-
ter data can be expected to significantly enhance studies
of polar ice.

ACKNOWLEDGEMENTS

SASS GDR data were obtained from the PoDAAC at the
Jet Propulsion Laboratory.

REFERENCES

[1] Drinkwater, M. R., LIMEX '87 Ice Surface Character-
estics: Implications for C-band SAR Backscat-
tter Signatures, *IEEE Transactions on Geosci-

[2] Livingstone, C.E., and M.R. Drinkwater, Spring-
time C-band Backscatter Signatures of Labrador
Sea Marginal Ice: Measurements versus Model-
ing Predictions, *IEEE Transactions on Geosci-

Sheet Surface Properties Observed by the Seasat-A
Scatterometer at Enhanced Resolution, in press

[4] Long, D.G., P.J. Hardin, and P.T. Whiting, Reso-
lution Enhancement of Spaceborne Scatterometer

[5] Onstott, R.G., SAR and Scatterometer Signa-
tures of Sea Ice, In *Microwave Remote Sensing
of Sea Ice*, (Ed.) P.D. Carsey, American Geophy-
sical Union, Geophysical Monograph 28, Chapter

A.K. Fung, S.P. Gogineni, A.J. Gow, T.C. Gren-
fell, H.C. Han, J.K. Lee, J.A. Kong, S. Mudalair,
S. Nghiem, R.G. Onstott, D. Perovich, L. Tsang,
and R.D. West, Microwave Sea Ice Signature Mod-
ing, In *Microwave Remote Sensing of Sea Ice*,
(Ed.) P.D. Carsey, American Geophysical Union,
Geophysical Monograph 28., Chapter 8, 137-175,
Figure 1. Selected images from a time series of A images (vv-pol) covering early July through early October 1978 from Ku-band SASS data. Each image covers a 6 day period. (a) JD 204-210. (b) JD 234-240. (c) JD 270-276. A rectangular lat/long projection was used.
Figure 2. Map of the movement of selected features from the SASS image time series covering JD 181 through JD 282 in 1978.
Figure 3. Selected images from a time series of A images (vv-pol) covering early July through early October 1993 from C-band ERS-1 data. Each image covers a 6 day period. (a) JD 204-210. (b) JD 234-240. (c) JD 270-276.